英矽智能发布基于Transformer模型的衰老时钟Precious1G
,由生成式人工智能驱动的临床阶段生物医药科技公司英矽智能(Insilico Medicine)宣布,公司团队近期在衰老领域权威期刊Aging发布了基于Transformer的多模态衰老时钟Precious1GPT。
Precious1GPT是一种利用注意力机制提高训练速度的生成生物学模型,通过多样化数据集整合分析,辅助衰老生物标志物研究和潜在靶基因知识图谱荟萃,进而赋能抗衰老和疾病的双效靶点发现。
近年来,研究人员开始将多模态transformer模型与神经网络结合,先通过未标签数据进行算法预训练,再引入较小规模的标签数据集进一步微调。
据悉,本次英矽智能发表的研究成果,是业界首个采用的多模态transformer的衰老时钟,有能力处理基因组学、蛋白质组学、显微镜数据、计算化学、临床影像等多种类数据。
此次研究中,英矽智能团队搭建创新的流程,以Precious1GPT分析转录组学、甲基化数据等多维度数据,实现一站式年龄预测和老龄相关疾病靶点发现。
首先,基于多模态transformer模型的回归器采用健康人数据样本进行年龄预测训练,学习得到的加权参数被输入基于多模态transformer模型的分类器用于患者组和对照组的区分。随后,研究团队基于回归器产生的数据对潜在靶基因进行筛选排序,再将结果输入到PandaOmics靶点发现平台进行关联分析,最终提名APLNR和IL23R为潜力双效靶点,有望同时靶向衰老和特发性肺纤维化、慢性阻塞性肺病、帕金森氏症、心衰等老龄化疾病。
英矽智能创始人兼首席执行官Alex Zhavoronkov表示,“英矽智能持续利用深度神经网络来解读疾病和衰老的底层生物机制。深度神经网络、强化学习、Transformer等现代人工智能技术的快速发展,使得搭建Precious1GPT这样的衰老时钟成为可能。它不仅能识别影响衰老进程和疾病发生的关键因素,还能通过知识图谱关联信息以提出潜在疾病靶点,以先进的AI技术加速发现影响衰老和疾病的潜在疗法。”